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Section 1: INTRODUCTION 1-2

The purpose of this report is to adapt our earlier work in nonlinear shell-
element methodology (4-6,19] to the specific kinds of probiems encountered in
the analysis of critically-loaded reinforced concrete shell structures. To this
end, we develop a resultant-type form of the basic equations (of motion) that
is both appropriate for the treatment of thick, layered shells and leads to an
efficient finite-element implementation as well. By eliminating most of the
work associated with thickness integration, the approach should be particu-
larly effective when numerous layers and/or thickness integration points are
required, as in the case of inelastically responding reinforced concrete. Fur-
thermore, adhering to a Continuum-Based approach, we continue to employ
pointwise constitutive relations for accurate through-thickness stress calcula-
tions, though these are ultimately presented to the element computational

routines in the form of resultants. Finally, the implementation of these new

procedures represents a straightforward extension of our current shell-element

software package.
i

The organization of the report is as follows. In Section 2, our previ- s

ous work is reviewed, with the main intent of introducing all of the perti-

nent notation. Then in Section 3, the basic equations, used as the starting .

point for finite-element discretization in (19|, are generalized to accomodate T

thick/layered shells. The impact of these revisions on the finite-element im-

plementation is presented in Section 4, where an outline of the Global and s

Local solution algorithms is presented as well. Finally, a brief summary and . -

conclusions are provided in Section 5. -:V.'
L
.

.......
........
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Section 2: REVIEW OF PREVIOUS WORK 2-2

§32.1 Background

In reference [4], a Continuum-Based (CB) approach to nonlinear finite-element shell analy-
sis is developed. These developments represent a generalization of the “degenerated-solid”
element, introduced by Ahmad et al. [1] for linear analysis. The basic advantage of
the CB approach is its convenient avoidance of complicated (and often ambiguous) shell
equations, while at the same time providing a straightforward vehicle for finite-element
discretization — via C° displacement interpolation. A second advantage is the natural in-
clusion of transverse-shear deformability, which increases the thickness regime over which

the method is applicable.

The CB approach presented in [4] extends the capabilities to include arbitrarily large
rotations, moderately large strains and a large class of (elastic/plastic) constitutive mod-
els. However, due to the full three-dimensional character of the equations — the thickness
coordinate, Z, appears explicitly in the element arrays — element formation can be quite
expensive. This is especially true in the case of muiti-layered inelastic shells, where thick-
ness integration may constitute a substantial portion of the computing time. Thus, in [19],
the thickness coordinate is pre-integrated out of the arrays by making several “thinness”
assumptions, namely:

(A1) Normality of transverse fibers is assumed in any fixed configuration. (This does
not preclude transverse shear deformation on an incremental basis.)

(A2) Curvature effects are approximated by using the average (reference surface) met-
ric when computing kinematic quantities. (This is tantamount to first approz:-
mation shell theories [2,11] that neglect terms of order /R with respect to 1.)

(A3) Taper of the shell wall is assumed to be gradual enough that: (i) derivatives of
Z along the surface directions may be neglected (kinematically) and (ii) the ‘zero
normal stress’ hypothesis may be enforced with respect to the reference-surface
normal. (This does not preclude thickness jumps.)

These assumptions leads to resultant-oriented equations (and element arrays) that
involve only surface integration. We therefore refer to the approach as the Continuum-
Based Resultant (CBR) formulation — to distinguish it from classical Resultant-Based

formulations.

p
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2-3 §2.2 CONTINUUM-BASED (CB) SHELL THEORY

i The CBR approach is significantly more economical than the CB approach, but due to
the above assumptions the advantages are biased towards “thin” shells, with a degradation

of accuracy anticipated as h/R (current thickness to minimum radius of curvature) is

increased.

: In Section 3, the economic advantages of the CBR approach are extended to the “thick”
}' shell regime. The remainder of the current section reviews the basic CB and CBR shell

equations and notational pre-requisites to the sequel. For greater depth and detail, the

reader is referred to [19).

B ]
_a

§2.2 Continuum-Based (CB) Shell Theory

2:2.1 Continuum Equations

We start with the Linearized Variational (LV) equations governing the incremen-
tal motion of a general three-dimensional continuum [16,17]. Note that a Lagrangian

(material-based) description of the motion is being employed and, unless otherwise spec-

F ified, all vector and tensor components are expressed in a fixed (global) Cartesian basis, 2 -

with indices 1, 5, k,! ranging from 1-3.

- totala a

In operator notation, the LV equations may be written

DM(AG) + DF(Au) = F='(u) — F™(u) - M(d) (2.1)

where F¢*! is the external force operator, 7'"* the internal force operator, M the inertial o
force (or mass) operator, D¥ the linearized internal force (or stiffness) operator, and DM e .
(the linearized mass operator) is identically equal to M. The argument, u, represents
the material displacement vector, and ii, the corresponding acceleration vector — both

considered to be functions of the material coordinates, X,.

The incremental displacements and accelerations, Au and A, emanate from the

linearization and are to be interpreted as excursions from the known (current) configuration
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Section 2: REVIEW OF PREVIOUS WORK 24

b associated with u. Note that the entire right-hand-side of (2.1) is thus known, while the _ ?
:-: left-hand-side involves the tangent operators and the unknown Au. Thus (2.1) constitutes

the basis for subsequent iterative algorithms (Section 4).

h In the current report, we will concentrate on the internal force and stiffness operators, _
Fint and D7, since the external force and mass operators are relatively unaffected by

::'f the choice of shell formulation (i.e., CB or CBR). Furthermore, it is these operators that

: engender the bulk of the cost in subsequent finite-element numerical computations. Their -
1 continuum definitions are given as follows
Frt) = / seTgdv (2.2) -
v
and

D¥(Au) = /agfg AgdV + /V(&ug)"cV(Au.-) dav (2.3} -

v , VY , ‘

D ;l:ll DFseom

where the integrals are performed over the current volume V of the body, with associated

spatial coordinates, z;.

In these expressions, A¢ is an incremental strain “vector” corresponding to the tensor

. '
Ve -

1 (0Au; A OAu;j

= 5 2.4 g

ACIJ 2 ( az’ + a:‘ ) ( ) j

and arranged in the order - j
Ae = |Aeyy, Acaa, Acys, 2Ae)2, 20e33, 24Aey, (2.5) 5f:Z'-:

Similarly, ¢ is the “vector” corresponding to the Cauchy stress tensor, ¢, and arranged

in the order

' R
, S
Lododedh e a0

g = l’m 032, 033, 012, 033, 031] (2~6) ‘

-4
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2-5 §2.2 CONTINUUM-BASED (CB) SHELL THEORY

The symbol é in (2.2) and (2.3) indicates a variational (or virtual) quantity, so that §¢ is
defined in precisely the same manner as Ag (2.5), except with Au, replaced by bu,, the
virtual displacement. (Note: du may also be viewed as the weighting function used to

obtain the variational equations; hence, we endow it with essentially the same properties
as Au.)

Finally, C is the “matrix” corresponding to the material response tensor, C. This
tensor is associated with the rate constitutive equations presented in [7] (see also §4.2).

The corresponding matrix is arranged such that

aﬁu;C._ 0Au;
oz; Rl

seTCAe (2.7)

»

P D N o




Section 2: REVIEW OF PREVIOUS WORK - 2-6

2.1.2 Introduction of Shell Hypotheses

Next, the continuum is specialized to the form of a shell, i.e., a body bounded by two

closely-spaced, generally curved surfaces separated by a relatively small, variable thickness

dimension hA.

To obtain the Continuum-Based shell equations, we translate this qualitative descrip-
tion into the following simplifying hypotheses (i.e., mathematical constraints) which are .

subsequently introduced in the LV equations (2.1)

BRI . AN

Kinematic Hypotheses

LA A z = X ] ‘.2 ]
Total: {X(E n, %) (& n) + 1(6 n) 29)

u(é,n,2) = (¢ n) + 2G6(¢,n) ,
Au = AU+ :iAd -

Incremental: { - (2.9) -

Aui-X = 0

o
Static Hypotheses -
Total: o33,(€,m2) = 0 (2.10) .- o
Incremental: og‘) (é,m2) = 0 (2.11) 3

o
)

In the above expressions, £, n are surface (curvilinear) coordinates, and z is the thickness

coordinate measured from the reference-surface (see Fig. 1). For the simple case when

e
LR y,'- oL
dodod B a A

3-6
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2-7 §2.2 CONTINUUM-BASED (CB) SHELL THEORY

the reference-surface is chosen to coincide with the mid-surface, Z and h are related by

% = ¢h/2, where ¢ is a parameter that ranges linearly from -1 at the bottom-surface to +1

at the top-surface.

Regarding the kinematic hypotheses, T; are the coordinates of a point on the reference-
surface, %, is the unit pseudo-normal vector (i.e, the current orientation of a vector initially
normal to the reference-surface), and %, and @, are the displacements of the reference-
surface and psuedo-normal (relative to the reference-surface), respectively (see Fig. 2).
Thus, (2.8) expresses the hypothesis that normals remain straight via linearity through the
thickness. The incremental constraint (2.9) says that the incremental pseudo-normal dis-
placement vector Al has no component parallel to the pseudo-normal itself. The equation
is therefore an expression of the incremental rigidity of the normal. Note that any two
components of Aiil in a plane orthogonal to X may be associated with rotation increments,

say Afyp and Afsp, as illustrated in Figure 2.

Regarding the static hypotheses, we have introduced a local Cartesian coordinate
basis at each point (¢,n, Z), called the lamina basis (denoted by the subscript “”). The
orthogonal lamina coordinates, z;, = (z1,,Z2,,23,) or (Z¢,ye, 2¢), are defined such that
z¢ and y, lie in the plane tangent to the the surface Z = constant, with 2, normal to
that surface (Fig. 3). Thus, (2.10) enforces the zero normal stress constraint in the
current configuration, while (2.11) enforces the same constraint on a rate (or, equivalently,
incremental) basis. Note that for this latter purpose, an objectsve rate is chosen, namely

{T) __ the Truesdell rate (17).

Incorporating the above constraints in the continuum variational operators (2.2)-(2.3)

leads to the following CB shell counterparts

2-7
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Section 2: REVIEW OF PREVIOUS WORK 3-8

Firtfn) = / 537 3,4V (2.12)
v
DF~='(Au) = / 55T &, A%, dV (2.13)
\ 4
DF*m(Au) = / Ve(bu)T 5 Ve(Au)dV  (2.14)
v
where
AE‘ = lAEzzt, AeVVt’ 2Aeﬂt’ 2Aeyz¢$ 2AE.3¢J (2'15)
and
g = l’zzp Oyyes Ozypr Oyzyp» a"tJ (2.16)

and C ¢ is obtained by static condensation of the ‘33’ component in C, as a result of (2.11).

The lamina-subscripted variables are related to the corresponding global Cartesian

quantities via the orthogonal transformation matrix, L, defined such that
ve = Lv (2.17)

and

te = LtLT (2.18)

where v is a generic vector and t is a generic second-rank tensor.

Finally, note that the total kinematic constraint (2.8), expressing the through-
thickness linearity of the displacement field, is implicit in (2.12)-(2.14), while the in-
cremental kinematic constraint (2.9) is more effectively imposed later, on a discrete (i.e.,
finite-element nodal) basis.

-~ —¥ — =

et - e
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2-9 §2.3 REDUCTION TO RESULTANT (CBR) EQUATIONS

§2.3 Reduction to Resultant (CBR) Equations

The CB shell equations differ from conventional shell equations in that they involve full
volume integration (for a discussion of other differences refer to [19]). In [19] (and simi-
larly in [15]), the thickness coordinate, Z, is pre-integrated out by making the “thinness”
assumptions reviewed in Section 2.1. Without such assumptions, even though the displace-
ments are linear in Z (see (2.8)), the strains do not in general inherit this nice feature. The
culprit is the Jacobian matrix, J,, relating curvilinear (£,7,Z) and Cartesian (z¢,ye, 2¢)

derivatives, i.e.,

a(-) _  4-r9(-)
. = Y g : (2.19)
where
8.‘% dzy dz
n (Y
oxe by, du Ay
J. 3% -a!'tf ; (2.20)

In general, J, is a full matrix with at least a linear dependence on Z; hence, its inverse
engenders a rational z dependence in all laminar derivatives via (2.19). This distributes

the thickness coordinate throughout the variational operators, (2.12)-(2.14), and inhibits

any further simplification.

However, under the assumptions (A1)-(A3) given in Section 2.1, J, is replaced by the

z-independent matrix

- e o
Je = [0 h/2] (2.21)

where the bar indicates evaluation at the reference surface. Employing (2.20), the varia-

tional equations are reduced to CBR form, wherein the pertinent operators are redefined

A
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Section 2: REVIEW OF PREVIOUS WORK 2-10 :
. ]
wid
: =
-
p . L
ﬁ i) = [eeTads (2.22) =
» s o
| DF~(au) = / 5eT D AedS (2.23) s
g L
DF*~(Au) = / 6gT S Ag,dS (2.24) . ;
S |
jl
.
Notice that the volume integrals have been replaced by surface integrals and the . }
previous stress and strain measures replaced by corresponding resultant quantities. These ' ‘
z-independent quantities are partitioned into membrane, bending and transverse-shear :‘4
components as follows
Ae™ Ac B
Ae = I Aet b o {An (2.25) .

. Ae’ Ay S
r g™ n o

s = (8 or {m (2.26)
. 8 q o
D™ D™ o

D = Dt o (2.27) =
L sym. D’ - -
'm m q
s = m' q (2.28)
| sym. 0

The resultant quantities Ae, s and D, are related to the pointwise continuum quan-

2-10




2-11 §2.3 REDUCTION TO RESULTANT (CBR) EQUATIONS

tities via a z-dependent partitioning matrix, Z, i.e.,

- A%, = Z(z) Ae(&,n) (2.29)
P s = / 27(z) g,dz (2.30)
’ D = / z7(3) &,2(3) d3 (2.31)
where
I 21 o
g z = [ ] (2.32)
b 0 0 1

(Note: In [19], the 2 x 2 identity matrix in the lower right corner of Z is replaced with a

diagonal matrix of shear correction factors.)

In particular, the individual stress resultants appearing in (2.26) and (2.28) are defined

as follows

n = / |Oz2p0 Oyypr Oy, )T 2 (2.33)
i
m = / |Oz2p0 Oyypr Oy, )T £d2 (2.34)
]
q = / lalll’ ozyl JT ds (2.35)
£ [
'o= T3 d3 PR
m = / 022, Oyyys Oay, ) #° di (2.36) s
i o
’ L
q = /[a,,t, a,"J zdz (2.37) o

and n, m and m’ are expanded matrix counterparts of n, m and m’, respectively. For

R

Ozz, Ozy .

n = / [ ¢ ¢ ] dz " \}
i 03" - _:: R

Oyye

B B
! et .
B
et

example
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. Section 2: REVIEW OF PREVIOUS WORK 2-12

b Finally, the individual resultant strain-displacement and gradient-displacement rela-

tions (the latter required for D¥7°°™) may be written

PP
L

aem = | 2pE, 240, (908, 38W) T (2.38)
t act = |Bpd 245 (SAG, OpW T (2:39)
Ae* = [(a—g‘y—fum), (242t + Ay |7 (2.40)
and
Ag; = |Ve(AT,), VAT,), AT, )T (2.41)

where the laminar derivatives are computed via the reference surface Jacobian, Jeo It
should be noted that through these expressions, the kinematic constraint (2.8) now appears

explicitly in the LV equations.

Ve
PR .

.

e
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2-13 §2.4 FINITE-ELEMENT DISCRETIZATION

§2.4 Finite-Element Discretization

Finite-element matrix equations of motion are easily obtained from either the CB or CBR
shell equations by employing an isoparametric {4,20] form of local approximation. Thus,
both the displacements and coordinates within an element subdomain are interpolated

from corresponding nodal quantities as follows

N‘ﬂ

X(&n) = D Nal&n)%a (2.42)
Nen

%(€&m) = D_Nué&nm)%e (2.43)
a=1
Nen

At(&,n) = Y Na(én)Au, (2.44)
a=1
Nen

Ati(g,n) = ) Na(én)Ad, (2.45)

where the subscript “a” ranges over the number of element nodes, and for quadrilateral
elements, the N, are typically chosen as Lagrangian interpolation functions (see Fig. 4).

Note that the interpolation is performed in a fized Cartesian basis, usually lamina or global,

depending on the context.

Substitution of (2.37)-(2.40) into the LV equations (2.1) yields the corresponding _ ]

finite-element matrix equations ' -3
o]

Mad + (K'"agl +K*™Ad = Fet — P _ Md (2.46) {

where M is the assembled mass matrix (from M), F*** is the assembled external force

vector (from F¢**), K™*! and K?°°™ are the assembled material and geometric stiffness

Ltet e, o
b bl dnd ot ;

matrices, respectively (from D7 ™" and D7***~) and F*™ is the assembled internal force _
vector (from F'"¢). The incremental displacement vector, Ad, contains all of the active »

nodal degrees-of-freedom. As explained in Section 4, these degrees-of-freedom are usually

expressed in a shell-oriented (rather than global-Cartesian) coordinate system.

3-13 *
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: The above arrays are assembled from the individual element arrays [20], with the

linkage established by the element displacement vectors, Ad®, that is
Ad* = {Ad)} = {Ad,}

. where “a” is an element node number and “A” is the corresponding global node number.
At each shell node, we have potentially 6 degrees-of-freedom, defined by

age = 2% 2.47
a = {Aﬁa} ("' )

However, during assembly the element arrays are suitably transformed to discretely enforce
the shell incremental kinematic constraint (2.9) as mentioned above. This reduces the

number of degrees-of-freedom per node to 5 — except where junctures occur [19}.

In closing this section, we give the specific definitions of the element arrays F"‘",
K™t!° and K?°°™* which result from substituting (2.37)-(2.40) into the CBR shell oper-
ators (2.22)-(2.24), as it will be useful to compare these to the revised arrays presented in

Section 4. In terms of nodal contributions, we have

Fint® = / Blsds (2.48)
Koot = / BTDB, dS (2.49) T
- «1
Kﬂcom e _ / 9651 9851 (2. 50)
g5l 9581

R e

COEE . . -
O L

PN S A 0

where B, is a nodal block of the element incremental strain-displacement matrix, defined

3-14 -

by the relationship . T 1
«n ) "«‘

Ae(6,n) = Y B¢ n)Ad, (2.51) 4

a=x] ‘:.:1
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; In practice, the B matrix at a given (integration) point, £, 7, is first defined in the lamina
system at that point such that

. Nen
'I Ae(€,n) = Y Bg,(£n)Ad,, (2.52)

where the lamina submatrix, B, ¢ 15 related to the globally attached version via

The block-diagonal matrix, [L], is the expanded lamina transformation for a nodal DOF
vector (2.43), i.e.,

o= |2 ° (2.54)
.' ~ Jo L '
Using the above definitions, the CBR version of B,, in terms of the element shape
i functions, N,, is given as follows
'Naz, O o | o 0 07
0 Noy, O |
' Nﬂ,yl Nﬂ,zt 0 l |
L 0 0 o | N 0 o0 S
B, = e (2.55) -
0 0 0 | 0 Ny, 'V
| Nay, Nag, O o
0 0 Noz, | Na 0 l ;
4
- Na.yt | o Na E ) . .‘
U
L]
R 1
l X -
2-15 v
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g Finally, the scalar coefficients appearing in the CBR geometric stiffness matrix (2.46)

are defined as

g 955 = Ve(Na)'nV,(Ny) (2.56)
N _ 935 = Ve(Na)'mVe(Ny) + Ve(No)* gNy (2.57) |
9a5 = Ve(Na)'mV(Ny) + Naq'V¢(Ns) (2.58)
955 = Ve(Na)' m'Ve(Ny) + Noq* Vo(N)
+ Ve(N,)* q'N, (2.59)

2
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Section 3: EXTENSION TO THICK/LAYERED SHELLS 3-2
§3.1 Motivation

While the CBR shell assumptions employed in the previous section greatly reduce finite-
element computational costs via the use of thickness pre-integration, at the same time
they restrict the maximum thickness-to-radius regime relative to the original CB formula-
tion. Thus, for thick shells with substantial curvature (or curvature change), there is the

possibility for a serious degradation of accuracy.

Furthermore, for problems in which transverse-shear effects become significant, e.g.,
in moderately thick shells with shear-flexible layers, it may be necessary to resort to a more
refined description of through-thickness kinematics than provided by the straight-normal
approximation employed in both CB and CBR formulations.

Hence, our goal in this section is as follows. We would like to relax the maximum-
thickness limitations engendered in our previous work, while at the same time retaining the

cost-effectiveness of the thickness pre-integration treatment of multi-layered elastic/plastic
shells.

§3.2 Revised Kinematics 1: Curvature Effects

The thickness-to-radius limitation imposed by the CBR method may be directly attributed
to the Curvature Assumption (A2), wherein the surface metric, or Jacobian, is held con-
stant (at its reference surface value) through the thickness. Recall from §2.3 that the
reason for doing this is that it leads to a linear through-thickness variation of the incre-
mental strains, and hence to a simple separation of direct and moment stress-resultants.
Once such resultants were computed, the variational (equilibrium) equations were devoid
of the thickness coordinate, z, and the formation of finite-element equilibrium arrays was

reduced in scope from volume to surface integration.

Upon closer look at the Jacobian, and how it influences the strain-displacement re-
lations, it becomes apparent that if we agree to retain the other two CBR assumptions,
i.e., Normality (A1) and Taper (A3), then the Curvature Assumption may be completely

abandoned without unduly complicating the equations. The derivation follows.

. ce e e
ala o d PRI
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3-3 §3.2 REVISED KINEMATICS 1: CURVATURE EFFECTS

3.2.1 The Surface Jacobian

First, as observed in [19], after invoking CBR assumptions (A1) and (A3), the Jacobian

matrix decouples into laminar (in-plane) and transverse partitions
8x¢ jt o
Jy = —— = 3.1
9§ [0 h/Z] (4)

where j,, the surface Jacobian, has the linear through-thickness variation

je = Je+Z3, (32)
with 9%, O
e = [%% a!-:’ } (3-3)
n
and 9% 8

(3.4)

The inverse of j, (used to obtain laminar derivatives from surface-coordinate deriva-

tives) is thus the following matrix of rational polynomials in 2

o sco T -':¢°fr of -
o= [ ee i (3.5)
where
oy oz
—cofT -
eI o [ a;% ag#] (3.6)
and
aA aA
zcofT [ ?!".L - f, 7
Je = Ein oOTs (3.7)
-3¢

are the transposed cofactor matrices of j, and :f,, respectively, and the surface Jacobian

determinant, j(Z), appearing in the denominator is the following quadratic polynomial
(2 = det(i,) = Jo+ni+ i (3.8)
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where ;VH
. 0%, 0y, O0%.0Yy,
: = (92t _ 92¢9Y, 3.9
h o = (Gean 3y 3¢ (3.9)
. . 0z; 0y, 079Y, 0%:0y: 9%, N
- = (==t3de _TtTH ek Lo Bk 1= 3.10 oo
; b (Gean anoe) * G an 3 oc) (3.10)
k - . aﬁ 8§¢ 6?:7 8§¢ : .1
= [(—— == - —— 3.11 oy
&’1 REMARK 3.1
, - -
M -CO!" 1‘0,7‘ . . . . g - = -~ 4
: Note that j, ° ,j, = ,Jo0,J1,, and j2 involve only the reference-surface quantities, X and X ‘
and hence are independent of 2. K

REMARK 3.2

When the CBR Curvature Assumption (A2) is introduced as well, equation (3.1) is replaced
by the simpler approximation (2.21) so that

scofT .

iBfE -3 = 5 (3.12)

which is just the first term in a Taylor expansion of (3.5) about 2 = 0, and leads to a first
appronimation shell theory.

Comparing this with (3.5), we see that the price of discarding the Curvature Assump-
tion is an additional 2-scaled matrix in the Jacobian numerator and a quadratic scalar
function of z in the denominator. )

1
3-4 j

.....




3-6 §3.2 REVISED KINEMATICS 1: CURVATURE EFFECTS

3.2.2 Laminar Displacement Derivatives

We now examine the effect of employing the Jacobian matrix (3.5), instead of the
more restrictive CBR version, for the computation of laminar derivatives, as required in

the CB shell internal force and stiffness operators (2.12)-(2.14).

The in-plane laminar derivatives of displacement are computed from the corresponding

surface-coordinate derivatives via

dAu;, r 04y,
—t = Tt (3.13)
ast) ¢ agP)
where the (P) superscript restricts our attention to planar components, i.e.,
8 ) a(-)
a(-) __{a:,} and 8(-)_{ T3 } (3.14)
(Py — 9( - (P) 8( ’
ox, % % TN
while the subscript ‘¢’ in (3.13) may range from 1 - 3.
Now, since
aAu,t aA'tZ,t aAiI.l
+ i (3.18)
ang) ang) ang)

we may apply (3.13) independently to translational and rotational components. Employing

the new definition (3.5) leads to

dAu,; 1 [-“,, AAT; ~cof AT, ]
[4 . ¢ - e [4
A YETY + z 3.16
and
aamt 1 [-co! BAGQ ~cof 8A‘1I."]
—=y = 7= +2zj 3.17
axiF) HE N alrT T (8.17)

Finally, substituting (3.16) and (3.17) back into (3.15) yields the following useful expression

3-5
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for computing laminar displacement derivatives

dAu;, 1 [04u;, . 9A%,, 9dw;,, _, 95w,
= = +z + + 2° ——==
axgp) 7(3) axgp) [ 3X£P) 8X£P) ) ang)

Ih (3.18) "
: where the wide bars and hats above the displacement derivatives in- -

dicate association with j, and J?t, respectively, i.e.

; e
’ 98U;, aet :-TOAT; -
P m = e 3] (3-19) .
ax{ a¢
oAU, 7 0AU;
" d__e.f T te 3.20
axgr) ¢ 36“,) ( )
aﬁig det [ 72\ =~T9AY,, T
aZE.' ¢ def j2\ ~T0AY; ¢
o ¥ (RS em 5
and o
/P Y R nY., (12);:2
&) = j@)/ = 1+(=)z+(T)z (3.23)
Jo Jo
REMARK 3.3 '

The CBR (curvature-restricted) case is recovered by neglecting :f, and replacing 7 by 1.
The result is

(3.24)

3-6
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3.2.3 Strain-Displacement Relations

Equation (3.18) may be used to construct similarly partitioned incremental strain-

displacement relations.

First define the vector of in-plane incremental strain components as

Agzz, )
AP = Aeyy, ¢ = =(IT) [AQ((,P) + EAggp) + EzAggP)] (3.25) -
(2
2A¢zy, )
where AT
U
( T":n
Py _ dAv =
0AY,; , 0Au
"Bzt ou =
dAa, , dAu —
Fni * Oz -
(P) _ dAv, ., dAv
Ag = ve T ve. . (3.27) 2
dAvV, , dAu dAT; , dAu
oz’ + 8y + oz, * "3, R
L
dAG, R
ore
(P _ 3AY,
Ag, = A—a;;lA (3.28)
dAv; , AN )
dz, + dy. -
Similarly, define a vector of transverse shear strain increments having the same struc- , i‘,'
ture as the in-plane components except for an additional contribution from the normal 2
derivatives — 3( - )/9z, ‘ .
dAwy , dAuy i
aet = {2A"=¢ } ) { oty . 0% } o
(3.29) 3
w

i
P




Section 3: EXTENSION TO THICK/LAYERED SHELLS

Rewriting (3.29) in the same form as (3.25), we obtain

ae® = = [ad) + 286" + Pad + Tad”]
i(2)
where
AW
) _ 9z,
A" = {aAw,}
Ye
A, , 0Aw,
Ac(s) - { Te * Xt }
& = A, . AW
* “By.

3y¢
LI
A ggs) = { 8’:&‘ }

AU,
ael® = {Am}

3.2.4 Resultant-Oriented Strain Measures

3-8

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

To complete the kinematic development and prepare for insertion in the variational

equations, we separate out the Z-dependence in (3.25) and (3.30) via a partitioning matrix

and deal with an expanded set of z-independent strain measures. This is analogous to the

CBR membrane, bending and shear partitions presented in §2.3.

Thus, for the planar (membrane/bending) components, we define

where
aglP)
AelP) = Asgp)
ag”

(3.35)

(3.36)

- —— o — —
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and

Z) = (1| & | (3.37)
1(2)

Similarly, for the transverse (shear) components, we define

AeS) = 25 pelS) (3.38)
where
ag®
(S)
Ag
ael® = “(5) (3.39)
Ag,
agl®)
and
20 = Ly oa o1 e (3.40)
3(2)

We intend to employ (3.35) and (3.38) to pre-integrate the LV equations through the
thickness. However, this is postponed until some additional kinematic effects have been

incorporated.

3-9
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Section 3: EXTENSION TO THICK/LAYERED SHELLS 3-10
§3.3 Revised Kinematics 2: Transverse-Shear Effects

In this section, we introduce a simple correction to the transverse-shear strain-displacement
relations used in the preceding sections. The correction allows for a predefined, e.g.,
parabolic, distribution of Ag,;z, and Acy,, through the thickness as compared with the
weighted constant value used in the conventional Reissner-type theory. Hence, more accu-
rate calculation of pointwise transverse-shear stresses is expected, which can be especially
important in the case of thick inelastically deforming shells. Furthermore, such an ap-
proach may eliminate the need for transverse shear correction factors (in some cases), and

hence relieve the user input burden.

Before proceeding, we note that this type of approach is not new. It has been used
by others (e.g., [3]) with good experimental correlation, although mainly in the context of
thick homogeneous elastic shells. While the advantages of the profile correction are not
as obvious for inelastic/layered shells, the justification is that it is easy to evaluate and

basically free of charge.

In light of the above explanation, the earlier definitions of the transverse shear strain

increments are replaced by

{A""} 14+ (-){ AE"‘} (3.41)
Aeys, (1+2G) Aey,, '

where, as suggested in [3], we tentatively employ the parabolic profile

p(2) = -1(—2————,13;:‘)—2 (3.42)

in which 2™¢ is the distance from the shell reference surface to the mid-surface, i.e., the

eccentricsty.

The correction given by (3.42) is thus consistent with the important case of shear-

stress-free boundary conditions on top and bottom shell surfaces.

Introducing (3.41) in the partitioned strain-displacement relations given in (3.38) sim-

3-10
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ply changes the definition of Z(5) (3.39) to . --

3 X | &2} 221 | j3In (3.43)
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Section 3: EXTENSION TO THICK/LAYERED SHELLS 3-12
§3.4 Revised Variational Equations

By direct substitution of the revised kinematic relations given in (3.25)~(3.40) into the CB
variational equations (2.1),(2.12)~(2.14) we arrive at what we shall call the CBR2 form of

the equations (for “2nd approximation CBR™). The only operators affected are the internal

force and stiffness (material and geometric). The revised definitions are presented here.

In the following definitions, all surface integrals apply to the reference surface (just
like in the CBR versions). The Z dependence of dS is not being neglected, but rather
absorbed into the integrand via the identity

ds(z) = 7(3)dS (3.44)

where dS is the differential surface area at the reference surface and ; is the normalized
surface Jacobian defined by (3.8) and (3.23). In the sequel, the symbol dS is used instead

of dS for notational simplicity, that is the bars are omitted.

3.4.1 CBR2 Internal Force Operator

Fint (6e(P)Tg(P) 4 §e(S)Tg(5)) ds (3.45)
s
where
sc()!’) (P
P = s{P) = / P Y (3.46)
.;P) i \gP)z2
and
'és) oS}
(s) (S)3
s [ A 4
(s) _ 1 - /I - -
s = = 1+ p(2 dz (3.47)
.;s) J \ ( )) g(s)zz
e 05

The (P) and (S) superscripts on the stress vectors have the same meaning as for the

3$-12
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strain vectors, i.e.,

and

§3.4 REVISED VARIATIONAL EQUATIONS
Ozz,
of) = %y, (3.48)
azyt
o
) = { u‘} (3.49)

and the vectors, 8{”) and 8(5), constitute membrane/bending and shear stress-resultants

conjugate to the strain measures §e(F) and 6e(S), respectively.

Note that ;( z) from (3.44) has been factored into the stress-resultant definitions (3.46)

and (3.47).

3-13
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3.4.2 CBR2 Material Stiffness Operator

xS

DF™ = / (5e(P)TD”’)Ae(P)+5e(5)TD‘s)Ae‘s’)dS (3.50)

where the in-Plane and transverse-Shear constitutive-resultant matrices are defined by

; Q(P) Q(P)' Q(P)-z
DA = / ! &Pz &P | as (3.51)
J -
sym _Q(P)"
R Q(S) Q(S)i g(s)zg Q(s)‘;
=(85)., A(S). =(S) -~
(5) (1 + p()) I S A
D = —_— = (S) ., .(s).z.: dz (352)
.. sym. C C 'z%
' = (S)~,
2 c s’

- (P (S ~
The constitutive tensors, _C_( ) and Q( ), are the partitions of C, corresponding to the
planar and transverse-shear stress/strain components defined in (3.25) and (3.29), respec-

tively.

3.4.3 CBR2 Geometric Stiffness Operator

»

S 3

3 D = 3 / 587S Ag, dS (3.53)

R =ls 1
L where 4
5:.'; S = / Z(6)T 4,2(0)(2) dz (3.54) I
; d j“’
o and . - A
= 1 8 210 o
X 7© = - (3.55) e
s i lo o o i
. 3-14
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Expansion of (3.54) yields the following ‘initial-stress’ resultant matrix
S Si2 Sz Sy

S22 Si23 S;
s = ? ! (3.56)
sym. S3z Saq
S
where, for and J = 1,2 or 3:
S,J = :l.—- O(P) zU-nu-n 43 (357)
J j(2)
2
and
Sie = / olS)zi-1dz (3.58)
i
and by the zero-normal-stress condition,
Si4 = / 7(3)0ss,dz = 0 (3.59)

z

The partitioned gradient vector, Ag;, in (3.53) is defined as follows
Vo(Au;,)
ag, = | Nomd (3.60)
V3(Au;,)
At,,
where the subscripted gradient operators are analogous to the subscripted strain measures,
(3.26)-(3.28), i.e.,

vO(A"il) =

! (3.61)

Vi(Aw,) = (3.62)

Va(du,) = —p (3.63)

The CBR2 shell operators presented above are now in appropriate form for finite-

element discretization.
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Section 4: FINITE-ELEMENT IMPLEMENTATION 4-2
§4.1 Overview

In this section, we discuss the numerical implementation of the extended CBR, or CBR2,
shell theory using the same finite-element framework as employed in our previous work
(e.g., [4],[19]). The discussion includes modifications to the element strain interpolation
matrices reflecting the kinematic revisions presented in Section 3, corresponding formulas
for computing the element force and stifiness arrays, a summary of specific shell-element
types (e.g., 4, 9 and 16-node) and an outline of the solution procedures used to obtain

displacements and stresses. Section 2.4 is recommended as background reading.

§4.2 Revised Element Arrays

4.2.1 Strain-Displacement Matrices

Substituting the C° element displacement approximations, (2.37)-(2.40) into the CBR2

incremental strain-displacement relations, (3.36) and (3.39), leads to the following element

counterparts.
Nen
AePle,n) = Y B¢ n)ada (4.1)
o=1
and
Nea
ael¥)(g,n) = Y BE)(¢n)ad, (4.2)
a=1

where B{P) and B{") are element membrane/bending and transverse-shear strain-displace-
ment submatrices at element node “a”, respectively; and Ad, is the element incremental

displacement, or DOF, vector at node “a”, resolved into global components (see (2.43)).

As explained in Section 2.4, the B matrices are obtained first with respect to the local

lamina basis and then transformed, that is

B{") = B{[L) (4.3)

WO W
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B{® = B{L] (4.4)

where [L| was defined in (2.5) such that

T

Ad:, = [LjAdS (4.5)

The definitions of B,(,‘: ) and Bﬁf) in terms of the element shape functions follow

— r"ff' ”

'Nez, O 0] © 0 0]
0 N.y,, 0] © 0 o
t Noy, Nopzy 0| O 0o o0
| Nez, © o | N,;,, 0 o0
3 B = 0 Ney, O O N, 0 (4.6)
¥ Naw, Newy 0 | Noy, Nopy O
0 0 0| N, 0 0
0 6 0| ©0 N, 0
L. o o0 o | N, N, Ol
00 Ny, | 0 0 0 7
o0 N, | 0 0 o0
00N, | 06 o N,
By = | Towe 100 T (a7)
oo o | o o N,
o0 o | 0o o0 N,
00 0 | N, O O
oo 0 | 0 N O .

The wide bars and hats in the above definitions emanate from (3.19)-(3.22) where

they were used to define lamina displacement derivatives in terms of the natural (£,n)
N, =[N,
(T o g {ee) «s
N‘nvt N‘v"

derivatives. Thus
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N:t _ ....T.j_z Na'( }

where the Jacobian matrices and determinant coefficients G,,:i}, Jo and j2) were defined in

and

section 3.2.1. They are computed within an element by using the coordinate interpolation

formulas (2.37)-(2.38) as shown in section 4.2.5.

4.2.2 CBR2 Element Internal-Force Vector

Substitution of (4.1) and (4.2) into the internal-force operator (3.45) over an individual
element subdomain, leads to the corresponding element force vector. A nodal subvector is

given by

F:nt‘ = (B{P)Tg(P) 4 B(S)Tg(S)) 4s° (4.10)
Se

where all quantities are defined, and it remains only to numerically perform the surface

integration.

4.2.3 CBR2 Element Material-Stiffness Matrix

Substitution of (4.1) and (4.2) into (3.50) yields the element material-stiffness matrix.

A nodal submatrix is defined as

Kmet® = /ng)rD(P)BgP) + BS)TDIBLS) gse (4.11)

and typically employs the same numerical quadrature scheme as used for the internal-force

vector (4.29).
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4.2.4 CBR2 Element Geometric-Sti s

For the geometric stiffness, we may exploit the simplicity of the C° interpolation and

obtain (after some manipulation) a much more economical form than suggested by (3.53).

The result is the following element nodal submatrix

' K9ome  _ [gﬂl 9551]
b =
[ : 951 9531

where

gap = VNGT(SHVNb + S;gﬁb)
= T — o~
+VN, (821VN5 + 523VN5)

—————T* — —

gap = VN, (SuVNb + 8;3VN, + SMN,,)
P o o,

+VN, (522 V Ny + S23VNy + s“Nb)

95 = (VN2 S21+ VN, S3 + N,S4)VN,
—— — T e
+(VN¢TSzz + VN¢ Ssa2 + N,S(g)VNb

955 = VN, (S22VN; + S23V N, + S34N,)
. T — —
+V N, (S32V Ny + S33VNy + S3(Np)
+N¢(S“VN5 + S43Nb)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

PRERES
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The shape-function gradient operators in the above definitions correspond to (4.10)
and (4.11), i.e.,

Na
VN, = { e } (4.17)
N“.Ve
and o
— N,
VN, = { re } (4.18)
Navyl

4.2.5 Computation of Lamina Transformations and Jacobians

The lamina transformation matrix, L, and the Jacobian quantities, j t,:ft, Jo, J1 and j2,
appear (or are required) in most of the revised element arrays. The following is a convenient
step-by-step procedure for computing these quantities at an element integration point. As
a prerequisite, it is assumed that the current element nodal coordinates, Z,;, and the shape

functions N,, N, ¢, and N, , are given.

Step 0 “Normal” Vectors (X,). Before processing any of the mt.egratnon points, element
nodal psuedo-normal vectors, X,, should be evaluated (for jt, J1 and j3). By the
Normality Assumption (A1), these may be computed from the reference surface
coordinates, i.e.,

2, = ©gqX8pg (4.19)
where N
e = 36 = Y TR (4.20)
3{ b=1
_ % =2 AN
e = (&) = Y ()% (4.21)
n b=1

and £, refers to the (€,n) coordinates at node “a”. This requires the =vzlaation
of the shape-function natural derivatives at nodes as well as integration points.
However, this involves no additional computation, since natural derivatives are
the same for all elements of a given type and hence may be pre-computed.

The following steps are then performed at each element integration point:

4-6
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i Step 1 Tangent and Curvature Vectors ( X/, and 9X/3¢€, ) .
’ N,
: e %, _ N=oN, . _
&) = ae(‘) = ; FT: (&) Xa (4.22)
e = Z = s (423)
n - an - e aq a .
he = o = 3 Pegs (4.24) "
R A ' .
N, o]
ax 23N, g
b = — = 4.25 ]
(9 = 50 = 3G (4.25) .
'
Step 2 Laminar Transformations (L ) . The lamina-global transformation matrix (see - ‘_:
(4.5)) is defined at a given interior point as
é;, -
L = |&, (4.26) L
&, N
where é.,, &,, and &, are orthogonal unit vectors parallel to the local z¢, y, and ' :jf V':
z¢ axes, respectively. To obtain an unbiased lamina system — with respect to the o
natural (surface) coordinates, £,7 — we construct the unit vectors, €;,,8,,,€,, B e
as follows: .
R - = o
(@) &, = @Ex&/| | (4.27) e
) & = (@ + &)l - | (4.28) .
() ép = @&;,xé, (4.29) ;;'::;
) 2,. . :‘-"}i
(d) &, = %_(e,‘ - ép) (4.30) .
2. N
(&) &, = %(GA + ép) (4.31)
Step 3 Surface Jacobian Matrices (I, and 1) . '
Co_ [emn  ex] _ [(8e ) | (8, - )
o= [52) 5E [(é,,¢ .8) | (&, 8] 432
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and
s S(P) StP) _ (éz, - he) | (8, - hy)
o= [Be ) B = @ ey | (éyﬁ-h")]

4-8

(4.33)

Step 4 Jacobian Determinants and Inverses. The final step is to compute the inverses of
J. and j, and use formulas (3.9)-(3.11) to obtain the determinant coefficients jo, /1
and j;. Given these primitive quantities, it is then straightforward to compute
the shape function laminar derivatives (4.8)—(4.9) and hence all of the kinematic
quantities required for the element force and stiffness arrays.
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f 4-9 §4.3 SPECIFIC SHELL-ELEMENT TYPES
B §4.3 Specific Shell-Element Types
The elements to be used in conjunction with the current (CBR2) shell formulation are
L: essentially the same as those used in our earlier work. Several different kinds of 4, 9 and
i 16-node elements are being adapted for this purpose (Fig. 4). All have in common the use
q of Lagrange, C°, interpolation and selective/reduced Gaussian surface quadrature [9].
The B (“B-bar”) technique of building the selective (component-by-component) in-
'F tegration into the definition of the B-matrix [8,19] is also used here. However, since the
CBR2 B-matrix has a different structure than the CBR version, selective integration has
{ a slightly different connotation. Such differences are explained in the following sample
# element descriptions.
. 4.3.1 4-Node Elements " 1
a The CBR2 approach was developed primarily for use with curved elements, since these {— - 4
are expected to be most effective for large-deformation problems involving thick, inelastic .
- shells (i.e., for reinforced concrete applications). Since the 4-node elements are basically - _
S flat, they do not benefit from the curvature-corrections introduced in section 3.2 — al- v

T

though they may benefit from the parabolic shear corrections (§3.3). Neverthela;, they

will be employed for purposes of comparison with the higher-order elements. In all cases,

e g e

the current 4-node elements use bilinear shape functions and selective/reduced integration

on internal force, stiffness and geometric stiffness arrays; refer to [19] for details. ).

[
L ~
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4.3.2 9-Node Elements

The Heterosis element [10], which combines Lagrange (biquadratic) interpolation for

rotations and Serendipity (8-node) interpolation for translations, is currently the recom-

mended 9-node element. To enhance convergence without giving rise to communicable
mechanisms, we use selective/reduced integration on both transverse-shear and membrane
strains. This corresponds to 2 x 2 quadrature on the entire B(®) matrix, as well as on
: partitions of B¥) that couple to trauslational DOFs: columns 1-3 of (4.6). On all other . -
terms, we use a normal (i.e., nearly exact) rule of 3 x 3, and, via the B-bar technique,

extrapolate the reduced partitions to normal quadrature points before performing the ac- _
h tual integration loop. Furthermore, it has also been found effective to underintegrate the _—

S geometric stiffness matrix, as reported in {19].

4.3.3 _16-Node Elements

With bi-cubic shape functions, it appears safe to use full 4 x 4 quadrature on the 16-
node elements, as neither locking nor rank deficiency are formally present [18]. However,

for thin shells we have found that the convergence rate is significantly improved by using

LR
’~’-‘_A .‘. L

selective 3 x 3 quadrature in the same manner as described above for the 9-node element.

It is likely that similar improvement will be observed for thicker shell problems.

REMARK 4.1 .

Ideally, we would prefer uniform reduced integration for all of the above elements, as
this significantly reduces both element formation and stress computation time. However,
this also increases rank deficiency, and with it the chances of activating spurious modes.
Presently, rigorous techniques for correcting rank deficiency (via stabilization matrices,
etc.) are being actively pursued [12-14); the results will be incorporated in the element
library when appropriate.
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! §4.4 The Global Algorithm

In this section we outline the basic steps involved in obtaining a solution to the finite-
element equations of motion for a shell structure. The structural equations (2.41) represent
i the global assembly of the individual element arrays defined in section 4.2. The constitutive
(stress) algorithm, which is embedded within the global (displacement) algorithm, will be

discussed subsequently in Section 4.5.

. For purposes of illustration, we consider the case of nonlinear dynamics, and em-
- ploy the generalized Newmark method to integrate the ODE system (i.e., for temporal
discretization), and “true-Newton” tangent stiffness updates for nonlinear iteration. The
t global algorithmic equations to be solved at each nonlinear iteration (¢ + 1) within each
time step (n + 1) are then [6]:

! K9 adfth = RrY (4.34)

L Cn+l

P for the sterative displacement increment, Adg':ll), followed by the corrector formulas

ag+y = 4% e adlt) (4.35)

5 Cass Cns1
g i+ 1 < i+1
F ver) = e+ (,,At) ag+y (4.36)

i+1
a(C.n-n) = a(C?ﬁ + (

2+
3 At, I (4.37)

where v and a are approximations of d and d, respectively; § and ~ are Newmark algo- .' =
i._ rithmic parameters; At is the time step increment, and the effective stifiness matrix and - '-{,?

. residual force vector are defined as

- -
K = EM+K (4.38)

and

R° = F* _F"™ _-Ma (4.39)

The subscript “C" appearing in (4.34)-(4.37) denotes the computational basis, that is,

the directions used to express the assembled degrees-of-freedom at each node. For shells,

4-11 .
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these are usually aligned in some manner with the local surface coordinates, since this is
both convenient for boundary conditions and for removal of unnecessary normal rotation

degrees-of-freedom as well.

Finally, the meaning of the symbolic update operator “ & ", which is different from

simple addition only for rotations, is explained under Task 4 below.

To complete the specification of the algorithm, the following predictor formulas are

used at the beginning of each new time step, n + 1

1-28

a9, = d, @ (Atv, + 5—At%an) (4.40)
v, = v.+(1-19)Ata, (4.41)
a®, = o (4.42)

The solve/correct sequence (4.34)-(4.37) is repeated iteratively until convergence at a
given time step, i.e., when Ad and R" norms become acceptably small. Then the time
step is advanced (n «— n + 1) by updating the prescribed external force F***, employing
the predictors (4.40)-(4.42), and so on.

The shell-element-related aspects of the above algorithm are now summarized for a sin-

gle global iteration cycle. Given the current element nodal coordinates { X, }52_‘, normal

vectors { X, }53_, , global/computational transformations for translations [T, ], and rota-
()

tions [T, ]f: 4’-1* the stress and constitutive tensor at element integration points, { g, },.1,

and {C,}")

n+1> Tespectively, and corresponding resultant quantities; the following tasks are

performed:

4-12
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Task 1 Element Formation. Form element arrays K¢, F*™‘ F¢*** and M*, and trans-

Task 2

Task 3

Task 4

form to the nodal computational bases via

e = TIKLT, (4.43)
for matrices, and e Peing®
Fiot' = TIFM (4.44)
for vectors, where the nodal block-diagonal transformation matrix, T, is defined
by
_ [Ta o
T. = [ o x,'l‘a] (4.45)

The orthogonal transformations, T, and T, are assumed to be user-supplied at
the beginning of the analysis, with the rotational triads, T updated as explained
under Task 4. The defining relations for T, T and x are as follows:

AT, = T,AT,, (4.46)

A, = x, A8, = x,T.A0,, (4.47)

where the skew-symmetric matrix, x,, relating rotation increments to increments
in relative-displacement of the normal (A), requires only the components of X,,

ie.,
0 i30 -226
Xa = [ —53¢ 0 iu ] (4.48)
i?a "ila 0

Assembly. Assemble the element arrays into the global arrays: K¢, Fitt, F&*
and M¢; combine to form K* and R".

Incremental Solve. Solve the global matrix equations (4.34) for Ad(ci:_ll). (If the

matrix, K*, has not been updated, this involves only forward reduction and back
substitution; otherwise the matrix is first factored.)

Global Displacement Update. Update the nodal configuration according to (4.35)-
(4.37). (Here we define the symbol “ @ ™.) For translational components of
displacement, (4.35) simply implies

(@ = {5, + {(aua) (4.49)
while for rotational components, we instead update the rotational triads via
(Raley) = [Fa)ih Qlaea) (4:50)
4-13
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Task 5

Task 6

Task 7

where A,  is the rotation increment at node “A” (the global equivalent of
element node “a”) emanating from the solution vector, Ad¢; and the orthogonal
matrix operator, Q (explained thoroughly in [19]) is defined functionally as

1 1
Q(ad) = I+ I_+_(A_02_]T) [A9+ -2-A92] (4.51)

Note that A@ is the skew-symmetric matrix corresponding to the vector A# (just
as x corresponds to X), and A# is its magnitude.

Element Displacement Update. Using the total displacements, 4, and the ro-
tational triads, T4, computed globally in Task 4, we then localize to the element
level and obtain the new reference surface displacement and pseudo-normal vec-
tors as

(Z D = (x ), + (@)Y (4.52)
and i (i+1) T
~ food 3 L -~
{x" }s:-tll) = [T“]'H»l [TG]O {x" }0 (4'53)

Note that the pseudo-normal vectors, X,, obtained in this way are used only to
compute displacement sncrements, AQi,, for strain/stress calculations (Task 6).
Alternatively, when constructing the CBR2 shell-element kinematic interpolation
arrays (e.g., B), we use the reference surface normals as described in Section 3.

Constitutive Algorithm. Here, we employ the updated element nodal coordi-

nates (4.52) and pseudo-normal vectors (4.53), and the previous stresses and

material-dependent historical quantities to compute the current stresses 62‘::)

and constitutive matrices C( t:) , resolved in the current lamina basis at each
element integration point. The algorithm is sketched in Section 4.5.

Stress/Constitutive Resultants — Thickness Integration. This constitutive post-

processing step, required in both CBR and CBR2 shell formulations, is also dis-
cussed in Section 4.5. The resultant quantities are employed directly in the for-
mation of element arrays for the next iterative cycle.

GO TO Task 1 (i — i +1).

4-14
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§4.5 The Constitutive Algorithm

In this section we outline the procedure that has been implemented for computing stresses

R AP

and the corresponding resultants required as input to the element equilibrium arrays.

Specific constitutive models (e.g., elasticity, plasticity, ...) will not be discussed here,

——

but rather a generic algorithm for integrating a class of rate constitutive equations. The
algorithm is both implementationally convenient and numerically accurate for problems

. involving large deformations [7].

3 4.5.1 Stress Computation

g The Truesdell rate constitutive equations (upon which our linearized variational equa-
; tions are based) may be written as
F T = Ci (4.54)

where
T = s+00-uwe-Ci (4.55)
and (.
C = C(o) (4.56) -
and ¢,; and w;; are the symmetric and skew symmetric parts of the velocity gradient tensor, " ]
9u;/9z,.
We integrate (4.54) to obtain & via the following incrementally-objective algorithm. el
)
The details are discussed in [19]. ]
R
)
Given a converged stress state at time (or load) step n, and a displacement increment o
3

4-15
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between step n and the current global iteration at step n + 1, we compute

’l,.., 1 = th + Aa‘n-fl (4’57)
where
1 -0—'!.. = Ql atﬁ QT (4'58)
k and
Aoe,,, = QuCrAe21Q] (4.59)

The subscripts ¢, 2r4+1 and ¢pq refer to the particular lamina basis active at steps

n, n + 1 and n + 1/2, respectively (i.e., the time of lamina-resolution). Except for the

incremental quantities, the step number also refers to the time of evaluatson. Furthermore,

-~

C = C+C (4.60)

is the Truesdell-modified material tensor, and

; 1 [ 9Au, dAu;
At = 3 ( 5omid az'.m'Jd) (4.61)
$] t

is the sncremental midpoint strain tensor, where

and

x™d = %(xn + Xn+1) (4.63)

Finally, Q, and Q, are orthogonal (rotation) matrices that are functions of the lamina
transformations and the skew-symmetric part of 3Au;/ az;.""‘. In the presence of small

shear deformations (both transverse and in-plane), Q, and Q, each approach the identity

4-16
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matrix, I. For the sake of brevity, we will assume this to be the case in the present

discussion. The more general case is considered in [19].

To compute Ag;’:ﬂ at a typical shell-element integration point, it is merely necessary
to replace x by x™'¢ in the definition of the B matrices given in Section 4.2.1. (Note that
for shells, (4.63) applies to both X and X.) The in-plane and transverse-shear components

of the incremental midpoint strain tensor are then evaluated using

Ntﬁ

aAglimd = zM Y B{Pmidag, (4.64)
a=1
and N
o AgSI™E = g(5) Y BlImidag, (4.65)
a=1
respectively.

This completes the definition of kinematic quantities required for the shell constitutive
algcrithm. Notice, however, that the normal strain component, (Agﬂ‘i)as, is not kine-
matically available from (4.64)—(4.65). For this, the static (zero-normal-stress) constraint

is used to extract the unknown strain through the constitutive equations.

In the elastic case, we may solve (4.57) for (Agz:f‘,“ )as such that (o, . ,)as = 0. yielding

.
(Ae2%)ss = —[(@e)as + I (Co.)sa(AER), (4.66)
J=1

where C, and Ag]**® are 6 x6 and 6 x 1 matrix/vector counterparts of the tensor quantities,
respectively, arranged so that the 33 lamina component comes last. Substitution of (4.66)

in (4.59) then satisfies the static constraint identically.

For the inelastic case, it is suggested that (4.66) be employed in a sub-iterative fashion,

so that the updated (inelastic) material tensor, C, may be accounted for in the calculation.

4-17
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J AT URPRr I S P JOLE 2

4.5. esultants

Given the pointwise stresses and constitutive coefficients, it is then necessary to in-

tegrate through the thickness for the corresponding resultant quantities appearing in the
element equilibrium arrays. Namely, s(¥) and s(S) are required for the internal force vector
(3.45), D{P) and D'S) for the material stiffness matrix (3.50), and S for the geometric

stiffness matrix (3.53).

Numerically, the resultant quantities are generated via one-dimensional Gauss quadra-

.' R
PR G W i

ture in a piecewise fashion through an optional sequence of “material” layers. Due to

the potential diversity of material properties and layer thicknesses, a different number of

quadrature points may be used within each layer. The following thickness integration - d
formula is used for general layered shells :
Niayers [ Nip(D) ; :

/ f(5dz = Y ?‘ E wif(%) (4.67) **"‘

s =1 =1 L.

where h; is the thickness of layer I, w, is the Gauss integration weight at point ¢ within 1
layer | and 2, is the corresponding thickness coordinate. The relationship between the __;
Gauss integration coordinate ¢;, which is usually given in the bi-unit interval (—1,+1) — -

withsn each layer — and the thickness coordinate Z;, which is measured from the element

reference-surface, is as follows

. h
2 = z,+;-2—l (4.68)

where Z; is the Z coordinate at the middle of layer [.

For single-layer shells, at least 2 thickness integration points are required in the elastic Lo
case; more for plasticity (e.g., 5-7). For multi-layer shells, it is often possible to make due
with less points per layer (i.e., > 1), but this is dependent on the relative layer thicknesses
and material properties. It is strongly advised that such problem-dependent decisions be

made on the basis of numerical experiment.

......................
..........................................
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matrix, I. For the sake of brevity, we will assume this to be the case in the present

discussion. The more general case is considered in {19].

To compute Ag7*? at a typical shell-element integration point, it is merely necessary

. WY LT
o R “
. et LS

to replace x by x™4 in the definition of the B matrices given in Section 4.2.1. (Note that
for shells, (4.63) applies to both X and X.) The in-plane and transverse-shear components

of the incremental midpoint strain tensor are then evaluated using .

NC!I
AQ(P?M“ = z(P) Z B‘(IP)midAdc (4_64)

a=1 [

and

| A
a

Nen
—— s _Asgfl;md = 2z ZB‘(.S)"'“Ada (4.68)
a=1
respectively.

»

This completes the definition of kinematic quantities required for the shell constitutive

e

algorithm. Notice, however, that the normal strain component, (Ast":f.j“)”, is not kine-

matically available from (4.64)-(4.65). For this, the static (zero-normal-stress) constraint

is used to extract the unknown strain through the constitutive equations.

In the elastic case, we may solve (4.57) for (Agl"':‘““)aa such that (o¢,_,,)ss = 0. yielding
. 5§ _ ‘ .
(Ag7%)as = - |(Ge.)ss+ Z(Q(. )ss(AET2) _,] (4.66) . -
J=1 T s

where C, and A 5}"‘“ are 6 x 6 and 6 x 1 matrix/vector counterparts of the tensor quantities, RN
respectively, arranged so that the 33 lamina component comes last. Substitution of (4.66) o=

in (4.59) then satisfies the static constraint identically.

For the inelastic case, it is suggested that (4.66) be employed in a sub-iterative fashion, =
so that the updated (inelastic) material tensor, C, may be accounted for in the calculation. »
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q Section 5: SUMMARY 5-2 -
] ~ ’
F An efficient extension of the nonlinear finite-element procedures presented

in [19] for thin shells has been provided herein for the thicker, layer-model

type of shell structures encountered in many reinforced concrete applications.
The current technique eliminates much of the work associated with through-

thickness integration present in the earlier Continuum-Based shell-element for-

-

mulation [4]. While a similar, resultant-type simplification was introduced in -
[19] to first approzimation (i.e., A/ R < 1), the more general case is now han- o
dled by including some additional terms that while expanding the element
kinematic arrays, still restrict thickness integration to stress and constitutive n

quantities. This can mean significant element-formation cost savings for muiti-

layer /elastic-plastic shell problems.

In addition, a higher-order (parabolic) transverse-shear profile has been

introduced in an attempt to eliminate the ad-hoc shear-correction factors in-

herited from linear analysis. This is expected to be an improvement for those
inelastic problems in which transverse shear plays a significant role. Neverthe-
less, the representation of transverse shear in such complex cases will require

further investigation.

It remains to evaluate the current shell-element procedures using some
realistic problems involving reinforced concrete constitutive models. Revisions

to the element software implementation are now in progress; these include ex-

tension of the element arrays to account for thick-shell behavior (as described

aalhallaaion s -

in Section 4) and provisions for interfacing with appropriate constitutive mod-




L R an g

oo

S S

2

ki

VT Y Y W

o).

. .-

PR O




T epeT—p—
PN

T

AN

————r v v Ty Y SRR B R e YTy
L e b P T .
: S e e A
: L ..
M
| - | - 1 - o i [ -t - -t PR -t

f130w029 jays 1 34

¢ =2z
ﬂwl&l-

+ (4'3)x (5°4°3)x

(G'3)xz

1z

(1— = 3) adeuns wojjoq

awes4 |eqo|9

(3 =35) adeuns aduasnpEI - -

(1+ =3) asepns doy

3 -—-\"

S3jeuip100d ddejns

s

dleuipi00d  jewiou

3

At e

e -

B . N P A .o
PV LI APIP T o A S Y PG S Wl YLl SV W G |

uoneingyuo’) jedndA ]

L. .
o

-t .
. -

ok o b Bm)

O YR S WY U W Y

-




- . " . v— vy - .4111111111 .1‘1
MRS IR AR RS A AENRCECOAR A RSB SRS OSSR AT e Al | QIR
..... , . . . R N B A A A A A P
E SR T . ! ' & Ca ' ) o e LV PP . . A LR Lt Tel L .
L . * -3 e e .

‘tov- ity
N N
‘cg %ty + e lzv =BV . ov .

(

g f nz+n=n

:sjuawdejdsiq |eio

(R

: | UolIeINg1uo ) (pauiiojapun)) [entu] “.4..”




v A amaen g L AR At bl g PP -
. . R A S AR S \j e . " \ L~ Y Ty
. BTSN . A ARG ] et

..... b A RS AP e ragr g o SU 4 on o
} . B4
. [ CE RN t [ A
[P -

siseg 3jeulpioo)) eujwe’ ‘g 34

suod = U

N
\

uaw .. |

ey
\ \k I

"|SU03

P S P S P S )




(%3 -13)-- (3 =93 -1)--- (13- )

mu:o-:v_m aduesde Jiseqg ‘p Sy

(*3-3)---(**3-3)("-3)---('3-3)

(“Np =)

(+aquinu wwnjod jepou = £)
(+1aquinu mos jepou = 1)

=0
°x (43)°N MW = X

CUZ

= (3)7

()f7(3)*7 = °N

suoioun, adeyg

4

wewo(] (evnshyd

{31qRoig) 3poON-OF

"Id "9 Jewnsoy

apoN
\

(Srieipenbig) 3poN-6

uewog Wun-ig

(7esuiig) 3poN-¥




References




(1]

(2]

3

(4]
(5]

(6]

7}

(8]

(o]

-ii

Ahmad, S., Irons, B.M. and Zienkiewiecz, O.C., “Analysis of Thick and Thin Shell
Structures by Curved Finite Elements,” Int. J. Num. Meth. Engrg. 2 (1970) pp.
419-431.

Calladine, C.R., Theory of Shell Structures, Cambridge University Press, Cambridge,
1983.

Drysdale, W.H. and Zak, A.R., “Structural Problems in Thick Shells,” in Thin-Shell
Structures (Eds. Y.C. Fung and E.E. Sechler) Prentice-Hall, Englewood Cliffs, New
Jersey, 1974, pp 453-464.

Hughes, T.J.R. and Liu, W.K., “Nonlinear Finite-Element Analysis of Shells: Part 1.”
Int. J. Num. Meth. Engrg. 26 (1981) pp. 331-362.

Hughes, T.J.R. and Liu, W.K., “Nonlinear Finite-Element Analysis of Shells: Part
II,” Int. J. Num. Meth. Engrg. 27 (1981) pp. 167-181. '

Hughes, T.J.R., Liu, W.K. and Levit, 1., “Nonlinear Dynamic Finite Element Analysis
of Shells”, pp. 151-168 in Nonlinear Finite Element Analysis in Structural Mechanics
(eds. W. Wunderlich et al.), Springer-Verlag, Berlin, 1981.

Hughes, T.J.R. and Winget, J., “Finite Rotation Effects in Numerical Integration of
Rate Constitutive Equations Arising in Large-Deformation Analysis”, Int. J. Num.
Meth. Engrg. 15 (1980), pp. 1862-1867.

Hughes, T.J.R., “Generalization of Selective Integration Procedures to Anisotropic
and Nonlinear Media,” Int. J. Num. Meth. Engrg. 15 (1980), pp. 1413-1418.

Hughes, T.J.R., Cohen, M. and Haroun, M., “Reduced and Selective Integration Tech-
niques in the Finite Element Analysis of Plates,” Nucl. Engrg. Design 46 (1978) pp.
203-222.

(10] Hughes, T.J.R., and Cohen, M., “The ‘Heterosis’ Family of Plate Finite Elements,”

Proc. ASCE Electronic Computations Conference, St. Louis, MO, August 6-8, 1979.

(11]) Kraus H., Thin Elastic Shells, Wiley, New York, 1967.

(12] Park, K.C. and Flaggs, D.L., “An Operational Procedure for the Symbolic Analysis

of the Finite Element Method,” Comp. Meth. Appl. Mech. Engrg. 42 (1984) pp.
37-486.

{13] Park, K.C. and Flaggs, D.L., “A Rank-Sufficient Four-Noded Plate Element with

One-Point Integration, Part I: Element Design,” to appear in Comp. Meth. Appl.
Mech. Engrg.

(14] Park, K.C., Stanley, G.M. and Flaggs, D.L., “A Uniformly Reduced, Fonr;Noded c°

Shell Element with Consistent Rank Corrections,” to appear in Comp. and Struct.

ii

...........
- N R S A

i i s

@
i

-

~ 9

hc g




—ii

[15] Parisch, H., “Nonlinear Analysis of Shells Using Isoparametric Elements,” pp. 47-63
in Nonlinear Finite Element Analysis of Plates and Shells (eds. T.J.R. Hughes et al.),
ASME, New York, 1981.

{16] Malvern, L.E., Introduction to the Mechanics of 2 Continuous Medium, Prentice-Hall, |”_
Englewood Cliffs, New Jersey, 1969. L

[17] Marsden, J.E. and Hughes, T.J.R, Mathematical Foundations of Elasticity, Prentice-
Hall, Englewood Cliffs, New Jersey, 1983.

[18] Ramm, E. and Sattele, J.M., “Elasto-Plastic Large Deformation Shell Analysis Using
Degenerated Elements,” pp. 265-282 in Nonlinear Finite Element Analysis of Plates
and Shells (eds. T.J.R. Hughes et al.), ASME, New York, 1981.

(19] Stanley, G.M., “Continuum-Based Elements for Nonlinear Analysis of Thin Shells,”
Lockheed Report D879066, in preparation.

.

[20] Zienkiewicz, O.C., The Finite Element Method, McGraw-Hill, London, 1977,

[REDCATSY

-

il




T

.o

PSSO

yn




